LECTURES 11 & 12 - Proteins

QUESTIONS TO TRY FOR PRACTICE

1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, 1		1 .	. 0
1) Which is a	not a role	nroteine	nlay in	Organisms?
1 / ** 111011 15 1	not a roic	proteins	pray m	organisms:
,		1	1 /	0

- (A) store genetic information
- B) movement and shape changes
- C) chemical signaling
- D) structural support
- 2) Three important functions of proteins are cell
- A) wall composition, cushioning, and membrane fluidity.
- (B) movement, signaling, and reaction catalysis.
- C) information coding, conversion, and transfer.
- 3) Which of the following is not a major functional class of proteins?
- (A) hereditary proteins
- B) enzymes
- C) motility proteins
- D) regulatory proteins
- E) structural proteins
- 4) An amino acid has an R-group that is negatively charged at cellular pH. Which of the following categories would best describe it?
- (A))acidic
- B) basic
- C) uncharged and polar
- D) nonpolar
- 5) An amino acid has an R-group that is positively charged at cellular pH. Which of the following categories would best describe it?
- A) acidic
- B) basic
- C) uncharged and polar
- D) nonpolar
- 6) An amino acid has an R-group that is composed of only carbon and hydrogen atoms. Which of the following categories would best describe it?
- A) acidic
- B) basic
- (C) uncharged and polar
- Ď) nonpolar

- 7) An amino acid has an R-group that does not have a positive or a negative charge but has an oxygen atom. Which of the following categories would best describe it?
- A) acidic
- B) basic
- C) uncharged and polar
- (D))nonpolar
- 8) Which of the following statements about the peptide-bonded backbone is correct?
- A) Both ends of the backbone have a free carboxyl group.

SECTION 1

- B) Both ends of the backbone have a free amino group.
- C) The orientation of the side chains in the backbone does not allow them to interact with each other or water.
- (D) One end of the backbone has a free amino group while the other has a free carboxyl group.
- E) Interactions only take place between C=O and N—H groups in the different peptide-bonded backbones.
- 9) Which of the following statements about peptides is correct?
- (A) As a whole, the structure of the peptide-bonded backbone is flexible.
- B) The peptide bond is capable of rotating.
- C) Joining two amino acids together through a peptide bond results in the formation of a carboxyl group.
- D) A peptide bond is formed by a condensation reaction between two carboxyl groups.
- E) A peptide bond is formed by a condensation reaction between the carboxyl and amino group of the same amino acid.
- 10) Which one of the following is not a component of each monomer used to make proteins?
- (A) a phosphorous atom, P
- B) an amino functional group, NH2
- C) a side chain, R
- D) a carboxyl group, COOH
- 11) Amino acid side chains (R groups) with what characteristic(s) dissolve best in water?
- A) small sizes and simple structures
- B) at least one ring structure
- C) polarity or charged structures
- D) the presence of sulfur

- 12) Why are polymerization reactions endergonic?
- A) They reduce entropy.
- B) They release heat, making the reactant monomers move faster.

SECTION 1

- C) Because the condensation and hydrolysis reactions are equally spontaneous.
- D) Because polymers are energetically more stable and have lower potential energy than monomers do.
- 13) At the pH found in cells (about 7.0), what happens to the amino group on an amino acid?
- (A) It acts as a base and gains a proton, giving it a positive charge.
- B) It acts as an acid and loses a proton, giving it a negative charge.
- C) It is reduced and tends to act as an electron donor in redox reactions.
- D) It remains neutral, like water, and does not have a charge.
- 14) At the pH found in cells (about 7.0), what happens to the carboxyl group on an amino acid?
- A) It acts as a base and gains a proton, giving it a positive charge.
- (B) It acts as an acid and loses a proton, giving it a negative charge.
- C) It is oxidized and tends to act as an electron acceptor in redox reactions.
- D) It remains neutral, like water, and does not have a charge.
- 15) How does the structure of an amino acid enable it to play its most important roles in cells?
- A) It can serve a wide variety of functions in a cell, because it contains the atoms most commonly found in organisms (C, H, N, and O).
- B) Because both carboxyl and amino groups are present, polymerization is exergonic. In addition, the presence of a side chain makes the molecule water soluble.
- C) The presence of carboxyl and amino groups gives it the ability to form peptide bonds, and its side chain gives it unique chemical properties.
- D) Because each amino acid contains a variety of functional groups, they can participate in a wide variety of chemical reactions.

- 16) Which of the following involves an increase in entropy?
- A) hydrolysis
- B) condensation
- C) polymerization
- D) chemical evolution
- 17) In solution, why do hydrolysis reactions occur more readily than condensation reactions?
- A) Hydrolysis increases entropy and is exothermic.
- B) Hydrolysis raises G, or Gibbs free energy.
- C) Hydrolysis decreases entropy and is exothermic.
- D) Hydrolysis increases entropy and is endothermic.
- 18) Suppose you discovered a new amino acid. Its R-group contains only hydrogen and carbon atoms. Predict the behavior of this amino acid.
- A) It is hydrophobic.
- B) It is hydrophilic.
- C) Relative to the amino acids found in organisms, its interactions with water will be intermediate.
- D) Relative to the amino acids found in organisms, its interactions with water will be very high.

- 19) A peptide bond is
- A) an ionic bond, not a covalent one.
- B) a triple covalent bond.
- (C) a particularly stable, planar covalent bond.

SECTION 1

- D) a particularly unstable covalent bond.
- 20) When polymerization of a protein is complete, but the protein is still completely linear, what is the highest level of structure that has been completed?
- (A) primary
- B) secondary
- C) tertiary
- D) quaternary
- 21) Which of the following best describes primary structure in proteins?
- A) It is the number of amino acids present in the complete protein.
- B) It is the number of peptide bonds in the complete protein.
- C) It is the sequence of amino acids in the complete protein.
- D) It is the number of α -helices and β -pleated sheets in the complete protein.
- 22) You are studying a protein that is shaped like a doughnut. The shape is a function of which level(s) of protein structure?
- A) primary only
- B) secondary only
- C) tertiary only
- D) secondary and tertiary only
- E) primary, secondary, and tertiary
- 23) An enzyme has a total of four active sites. When you denature the molecule and study its composition, you find that each active site occurs on a different polypeptide. Which of the following hypotheses does this observation support?
- A) The enzyme is subject to allosteric regulation.
- B) The enzyme requires a cofactor to function normally.
- C) The protein's structure is affected by temperature and pH.
- D) The protein has quaternary structure.
- 24) Which of the following observations is the strongest argument in favor of the hypothesis that protein structure and function are correlated?
- A) Proteins function best at certain temperatures.
- B) Proteins have four distinct levels of structure and many functions.
- C) Enzymes tend to be globular in shape.
- D) Denatured (unfolded) proteins do not function normally.